László Szilárd Csaba Ph.D.
László Szilárd Csaba Ph.D.
Professor (assoc.) dr.habil. Technical University of Cluj-Napoca
Adresă de e-mail confirmată pe math.utcluj.ro - Pagina de pornire
TitluCitat deAnul
An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions
RI Bot, ER Csetnek, S László
Euro Journal of Computational Optimization 4 (1), 3-25, 2016
682016
Some Existence Results of Solutions for General Variational Inequalities
S László
Journal of Optimization Theory and Applications 150 (3), 425-443, 2011
272011
Densely defined equilibrium problems
S László, A Viorel
Journal of Optimization Theory and Applications 166 (1), 52-75, 2015
182015
Multivalued variational inequalities and coincidence point results
S László
Journal of Mathematical Analysis and Applications 404 (1), 105-114, 2013
172013
Existence of solutions of inverted variational inequalities
S László
Carpathian Journal of Mathematics 28 (2), 271-278, 2012
162012
Generalized monotone operators on dense sets
S László, A Viorel
Numerical Functional Analysis and Optimization 36 (7), 901-929, 2015
132015
Monotone operators and closed countable sets
G Kassay, C Pintea, S László
Optimization 60 (8-9), 1059-1069, 2011
132011
On the generalized parallel sum of two maximal monotone operators of Gossez type (D)
R Ioan Bot, S László
Journal of Mathematical Analysis and Applications 391 (1), 82-98, 2012
122012
Generalized monotone operators, generalized convex functions and closed countable sets
S László
Journal of Convex Analysis 18 (4), 1075-1091, 2011
112011
Vector Equilibrium Problems on Dense Sets
S László
Journal of Optimization Theory and Applications 170 (2), 437-457, 2016
102016
θ− MONOTONE OPERATORS AND θ− CONVEX FUNCTIONS
S László
Taiwanese Journal of Mathematics 16 (2), 733-759, 2012
92012
Monotone operators and first category sets
G Kassay, C Pintea, S László
Positivity 16 (3), 565-577, 2012
82012
Solution existence of general variational inequalities and coincidence points
S László, A Amini-Harandi
Carpathian Journal of Mathematics 30 (1), 15-22, 2014
62014
A coincidence point result via variational inequalities
A Amini-Harandi, S László
Fixed Point Theory 15 (1), 87-98, 2014
52014
A second-order dynamical approach with variable damping to nonconvex smooth minimization
RI Boț, ER Csetnek, SC László
Applicable Analysis, 1-18, 2018
42018
A primal-dual approach of weak vector equilibrium problems
S László
Open Mathematics 16 (1), 276-288, 2018
42018
On the strong representability of the generalized parallel sum
S László
Bulletin of the Malaysian Mathematical Sciences Society 37 (4), 1029-1046, 2014
42014
About the Maximal Monotonicity of the Generalized Sum of Two Maximal Monotone Operators
S László, B Burján-Mosoni
Set-Valued and Variational Analysis 20 (3), 355-368, 2012
42012
Approaching nonsmooth nonconvex minimization through second order proximal-gradient dynamical systems
RI Bot, ER Csetnek, S Laszlo
Journal of Evolution Equations, DOI:10.1007/s00028-018-0441-7, 2018
32018
On injectivity of a class of monotone operators with some univalency consequences
S László
Mediterranean Journal of Mathematics 13 (2), 729-744, 2016
32016
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20