Urmăriți
Scott Linderman
Scott Linderman
Adresă de e-mail confirmată pe stanford.edu - Pagina de pornire
Titlu
Citat de
Citat de
Anul
Discovering Latent Network Structure in Point Process Data
SW Linderman, RP Adams
Proceedings of The 31st International Conference on Machine Learning, 1413–1421, 2014
3272014
The striatum organizes 3D behavior via moment-to-moment action selection
JE Markowitz, WF Gillis, CC Beron, SQ Neufeld, K Robertson, ND Bhagat, ...
Cell 174 (1), 44-58. e17, 2018
3192018
Bayesian learning and inference in recurrent switching linear dynamical systems
S Linderman, M Johnson, A Miller, R Adams, D Blei, L Paninski
Artificial Intelligence and Statistics, 914-922, 2017
235*2017
Learning latent permutations with gumbel-sinkhorn networks
G Mena, D Belanger, S Linderman, J Snoek
arXiv preprint arXiv:1802.08665, 2018
2192018
Variational sequential monte carlo
C Naesseth, S Linderman, R Ranganath, D Blei
International conference on artificial intelligence and statistics, 968-977, 2018
2182018
Reparameterization gradients through acceptance-rejection sampling algorithms
C Naesseth, F Ruiz, S Linderman, D Blei
Artificial Intelligence and Statistics, 489-498, 2017
1212017
Dependent multinomial models made easy: Stick-breaking with the Pólya-Gamma augmentation
S Linderman, MJ Johnson, RP Adams
Advances in Neural Information Processing Systems 28, 2015
1192015
Probabilistic models of larval zebrafish behavior reveal structure on many scales
RE Johnson, S Linderman, T Panier, CL Wee, E Song, KJ Herrera, ...
Current Biology 30 (1), 70-82. e4, 2020
852020
Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural activity in C. elegans
S Linderman, A Nichols, D Blei, M Zimmer, L Paninski
BioRxiv, 621540, 2019
712019
BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos
E Batty, M Whiteway, S Saxena, D Biderman, T Abe, S Musall, W Gillis, ...
Advances in Neural Information Processing Systems 32, 2019
652019
Tree-structured recurrent switching linear dynamical systems for multi-scale modeling
J Nassar, SW Linderman, M Bugallo, IM Park
arXiv preprint arXiv:1811.12386, 2018
652018
Scalable bayesian inference for excitatory point process networks
SW Linderman, RP Adams
arXiv preprint arXiv:1507.03228, 2015
652015
Bayesian latent structure discovery from multi-neuron recordings
S Linderman, RP Adams, JW Pillow
Advances in Neural Information Processing Systems, 2002-2010, 2016
602016
Bayesian latent structure discovery from multi-neuron recordings
S Linderman, RP Adams, JW Pillow
Advances in Neural Information Processing Systems, 2002-2010, 2016
602016
Reparameterizing the birkhoff polytope for variational permutation inference
S Linderman, G Mena, H Cooper, L Paninski, J Cunningham
International Conference on Artificial Intelligence and Statistics, 1618-1627, 2018
532018
Recurrent switching dynamical systems models for multiple interacting neural populations
J Glaser, M Whiteway, JP Cunningham, L Paninski, S Linderman
Advances in neural information processing systems 33, 14867-14878, 2020
522020
A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation
SW Linderman, MJ Johnson, MA Wilson, Z Chen
Journal of neuroscience methods 263, 36-47, 2016
49*2016
Simplified state space layers for sequence modeling
JTH Smith, A Warrington, SW Linderman
arXiv preprint arXiv:2208.04933, 2022
382022
Generalized shape metrics on neural representations
AH Williams, E Kunz, S Kornblith, S Linderman
Advances in Neural Information Processing Systems 34, 4738-4750, 2021
332021
A general recurrent state space framework for modeling neural dynamics during decision-making
D Zoltowski, J Pillow, S Linderman
International Conference on Machine Learning, 11680-11691, 2020
302020
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20