Hamiltonian boundary value methods (energy preserving discrete line integral methods) L Brugnano, F Iavernaro, D Trigiante J. Numer. Anal. Ind. Appl. Math 5 (1-2), 17-37, 2010 | 281 | 2010 |

High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems F Iavernaro, D Trigiante J. Numer. Anal. Ind. Appl. Math 4 (1-2), 87-101, 2009 | 152 | 2009 |

Line integral methods for conservative problems L Brugnano, F Iavernaro CRC Press, 2016 | 139 | 2016 |

Test set for initial value problem solvers F Mazzia, F Iavernaro, C Magherini Department of Mathematics, University of Bari, 2003 | 126 | 2003 |

A unifying framework for the derivation and analysis of effective classes of one-step methods for ODEs L Brugnano, F Iavernaro, D Trigiante Arxiv preprint arXiv:1009.3165, 2010 | 114* | 2010 |

A note on the efficient implementation of Hamiltonian BVMs L Brugnano, F Iavernaro, D Trigiante Journal of computational and Applied Mathematics 236 (3), 375-383, 2011 | 96 | 2011 |

Analysis of Hamiltonian boundary value methods (HBVMs): a class of energy-preserving Runge–Kutta methods for the numerical solution of polynomial Hamiltonian systems L Brugnano, F Iavernaro, D Trigiante Communications in Nonlinear Science and Numerical Simulation 20 (3), 650-667, 2015 | 90 | 2015 |

Energy-and Quadratic Invariants--Preserving Integrators Based upon Gauss Collocation Formulae L Brugnano, F Iavernaro, D Trigiante SIAM Journal on Numerical Analysis 50 (6), 2897-2916, 2012 | 89 | 2012 |

*s*‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial TypeF Iavernaro, B Pace AIP Conference Proceedings 936 (1), 603-606, 2007 | 89 | 2007 |

Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques F Iavernaro, F Mazzia Applied Numerical Mathematics 28 (2-4), 107-126, 1998 | 83 | 1998 |

Energy conservation issues in the numerical solution of the semilinear wave equation L Brugnano, GF Caccia, F Iavernaro Applied Mathematics and Computation 270, 842-870, 2015 | 80 | 2015 |

Block-boundary value methods for the solution of ordinary differential equations F Iavernaro, F Mazzia SIAM Journal on Scientific Computing 21 (1), 323-339, 1999 | 75 | 1999 |

A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic P Amodio, F Iavernaro, F Mazzia, MS Mukhametzhanov, YD Sergeyev Mathematics and Computers in Simulation 141, 24-39, 2017 | 68 | 2017 |

Numerical methods for solving initial value problems on the Infinity Computer Y Sergeyev, M Mukhametzhanov, F Mazzia, F Iavernaro, P Amodio | 63 | 2016 |

Hamiltonian BVMs (HBVMs): a family of “drift free” methods for integrating polynomial Hamiltonian problems L Brugnano, F Iavernaro, D Trigiante AIP Conference Proceedings 1168 (1), 715-718, 2009 | 61 | 2009 |

Efficient implementation of Gauss collocation and Hamiltonian boundary value methods L Brugnano, G Frasca Caccia, F Iavernaro Numerical Algorithms 65, 633-650, 2014 | 60 | 2014 |

Conservative block‐boundary value methods for the solution of polynomial Hamiltonian systems F Iavernaro, B Pace AIP Conference Proceedings 1048 (1), 888-891, 2008 | 60 | 2008 |

The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: the case of symplecticity L Brugnano, F Iavernaro, D Trigiante Applied Mathematics and Computation 218 (16), 8056-8063, 2012 | 59 | 2012 |

Energy-conserving methods for the nonlinear Schrödinger equation L Barletti, L Brugnano, GF Caccia, F Iavernaro Applied Mathematics and Computation 318, 3-18, 2018 | 58 | 2018 |

Line integral methods which preserve all invariants of conservative problems L Brugnano, F Iavernaro Journal of Computational and Applied Mathematics 236 (16), 3905-3919, 2012 | 53 | 2012 |