Energy conservation issues in the numerical solution of the semilinear wave equation L Brugnano, G Frasca-Caccia, F Iavernaro Appl. Math. Comput., 270 (2015), pp. 842–870, 2014 | 83 | 2014 |
Efficient implementation of Gauss collocation and Hamiltonian boundary value methods L Brugnano, G Frasca-Caccia, F Iavernaro Numerical Algorithms 65 (3), 633-650, 2014 | 60 | 2014 |
Energy-conserving methods for the nonlinear Schrödinger equation L Barletti, L Brugnano, G Frasca-Caccia, F Iavernaro Applied Mathematics and Computation 318, 3-18, 2018 | 58 | 2018 |
Simple bespoke preservation of two conservation laws G Frasca-Caccia, PE Hydon IMA Journal of Numerical Analysis 40 (2), 1294-1329, 2020 | 18 | 2020 |
A new technique for preserving conservation laws G Frasca-Caccia, PE Hydon Foundations of Computational Mathematics 22 (2), 477-506, 2022 | 13 | 2022 |
Efficient implementation of geometric integrators for separable Hamiltonian problems L Brugnano, G Frasca-Caccia, F Iavernaro PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND …, 2013 | 13 | 2013 |
Numerical preservation of multiple local conservation laws G Frasca-Caccia, PE Hydon Applied Mathematics and Computation 403, 126203, 2021 | 12 | 2021 |
Hamiltonian boundary value methods (HBVMs) and their efficient implementation L Brugnano, G Frasca-Caccia, F Iavernaro Journal MESA 5 (4), 343-411, 2014 | 12 | 2014 |
Line integral solution of Hamiltonian PDEs L Brugnano, G Frasca-Caccia, F Iavernaro Mathematics 7 (3), 275, 2019 | 10* | 2019 |
Locally conservative finite difference schemes for the modified KdV equation G Frasca-Caccia, PE Hydon arXiv preprint arXiv:1903.11491, 2019 | 9 | 2019 |
Energy conservation issues in the numerical solution of Hamiltonian PDEs L Brugnano, G Frasca-Caccia, F Iavernaro PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND …, 2015 | 8 | 2015 |
Recent advances in the numerical solution of Hamiltonian PDEs L Brugnano, G Frasca-Caccia, F Iavernaro PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND …, 2015 | 8 | 2015 |
Numerical conservation laws of time fractional diffusion PDEs A Cardone, G Frasca-Caccia Fractional Calculus and Applied Analysis 25 (4), 1459-1483, 2022 | 7 | 2022 |
A MATLAB code for the computational solution of a phase field model for pitting corrosion D Conte, G Frasca-Caccia Dolomites Research Notes on Approximation 15 (DRNA Volume 15.2), 47-65, 2022 | 6 | 2022 |
Exponentially fitted methods that preserve conservation laws D Conte, G Frasca-Caccia Communications in Nonlinear Science and Numerical Simulation 109, 106334, 2022 | 6 | 2022 |
Line integral formulation of energy and QUadratic invariants preserving (EQUIP) methods for Hamiltonian systems L Brugnano, G Frasca-Caccia, F Iavernaro INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 …, 2016 | 5 | 2016 |
A new efficient implementation for HBVMs and their application to the semilinear wave equation. G Frasca-Caccia Dipartimento di Matematica ed Informatica "Ulisse Dini", Università degli …, 2015 | 5* | 2015 |
Bespoke finite difference methods that preserve two local conservation laws of the modified KdV equation G Frasca-Caccia AIP Conference Proceedings 2116 (1), 140004, 2019 | 4 | 2019 |
Recent advances in the numerical solution of Hamiltonian partial differential equations L Barletti, L Brugnano, G Frasca-Caccia, L Iavernaro Numerical Computations: Theory and Algorithms (NUMTA–2016) 1776, 020002-1 …, 2016 | 4 | 2016 |
Solving the nonlinear Schrödinger equation using energy conserving Hamiltonian boundary value methods L Barletti, L Brugnano, G Frasca-Caccia, F Iavernaro AIP Conference Proceedings 1863 (1), 160002, 2017 | 3 | 2017 |