Urmăriți
Ross Goroshin
Ross Goroshin
Google Brain
Adresă de e-mail confirmată pe google.com - Pagina de pornire
Titlu
Citat de
Citat de
Anul
Efficient object localization using convolutional networks
J Tompson, R Goroshin, A Jain, Y LeCun, C Bregler
Proceedings of the IEEE conference on computer vision and pattern …, 2015
17672015
Learning to navigate in complex environments
P Mirowski, R Pascanu, F Viola, H Soyer, AJ Ballard, A Banino, M Denil, ...
arXiv preprint arXiv:1611.03673, 2016
9472016
Vector-based navigation using grid-like representations in artificial agents
A Banino, C Barry, B Uria, C Blundell, T Lillicrap, P Mirowski, A Pritzel, ...
Nature 557 (7705), 429-433, 2018
6972018
Meta-dataset: A dataset of datasets for learning to learn from few examples
E Triantafillou, T Zhu, V Dumoulin, P Lamblin, U Evci, K Xu, R Goroshin, ...
arXiv preprint arXiv:1903.03096, 2019
6482019
Stacked What-Where Auto-encoders
J Zhao, M Mathieu, R Goroshin, Y LeCun
https://arxiv.org/abs/1506.02351, 2016
3642016
Unsupervised learning of spatiotemporally coherent metrics
R Goroshin, J Bruna, J Tompson, D Eigen, Y LeCun
Proceedings of the IEEE international conference on computer vision, 4086-4093, 2015
1742015
Unsupervised learning of spatiotemporally coherent metrics
R Goroshin, J Bruna, J Tompson, D Eigen, Y LeCun
Proceedings of the IEEE international conference on computer vision, 4086-4093, 2015
1742015
Learning to linearize under uncertainty
R Goroshin, MF Mathieu, Y LeCun
Advances in neural information processing systems 28, 2015
1432015
Saturating auto-encoders
R Goroshin, Y LeCun
arXiv preprint arXiv:1301.3577, 2013
612013
Unsupervised feature learning from temporal data
R Goroshin, J Bruna, J Tompson, D Eigen, Y LeCun
arXiv preprint arXiv:1504.02518, 2015
472015
Comparing transfer and meta learning approaches on a unified few-shot classification benchmark
V Dumoulin, N Houlsby, U Evci, X Zhai, R Goroshin, S Gelly, H Larochelle
arXiv preprint arXiv:2104.02638, 2021
392021
Impact of aliasing on generalization in deep convolutional networks
C Vasconcelos, H Larochelle, V Dumoulin, R Romijnders, N Le Roux, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
372021
An effective anti-aliasing approach for residual networks
C Vasconcelos, H Larochelle, V Dumoulin, NL Roux, R Goroshin
arXiv preprint arXiv:2011.10675, 2020
272020
Approximate solutions to several visibility optimization problems
R Goroshin, Q Huynh, HM Zhou
Communications in Mathematical Sciences 9 (2), 535-550, 2010
222010
Learned image compression for machine perception
F Codevilla, JG Simard, R Goroshin, C Pal
arXiv preprint arXiv:2111.02249, 2021
162021
A unified few-shot classification benchmark to compare transfer and meta learning approaches
V Dumoulin, N Houlsby, U Evci, X Zhai, R Goroshin, S Gelly, H Larochelle
Thirty-fifth Conference on Neural Information Processing Systems Datasets …, 2021
152021
Learning to navigate in complex environments. arXiv
P Mirowski, R Pascanu, F Viola, H Soyer, AJ Ballard, A Banino, M Denil, ...
arXiv preprint arXiv:1611.03673, 2016
152016
Automated cable tracking in sonar imagery
JC Isaacs, R Goroshin
OCEANS 2010 MTS/IEEE SEATTLE, 1-7, 2010
102010
Proto-value networks: Scaling representation learning with auxiliary tasks
J Farebrother, J Greaves, R Agarwal, CL Lan, R Goroshin, PS Castro, ...
arXiv preprint arXiv:2304.12567, 2023
72023
Efficient object localization using convolutional networks. CoRR abs/1411.4280 (2014)
J Tompson, R Goroshin, A Jain, Y LeCun, C Bregler
arXiv preprint arXiv:1411.4280, 2014
62014
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20