A survey on stance detection for mis-and disinformation identification M Hardalov, A Arora, P Nakov, I Augenstein arXiv preprint arXiv:2103.00242, 2021 | 77 | 2021 |
Cross-domain label-adaptive stance detection M Hardalov, A Arora, P Nakov, I Augenstein arXiv preprint arXiv:2104.07467, 2021 | 41 | 2021 |
Few-shot cross-lingual stance detection with sentiment-based pre-training M Hardalov, A Arora, P Nakov, I Augenstein Proceedings of the AAAI Conference on Artificial Intelligence 36 (10), 10729 …, 2022 | 35 | 2022 |
Probing Pre-trained Language Models for Cross-Cultural Differences in Values A Arora, LA Kaffee, I Augenstein The 17th Conference of the European Chapter of the Association for …, 2022 | 21 | 2022 |
Multi-hop fact checking of political claims W Ostrowski, A Arora, P Atanasova, I Augenstein arXiv preprint arXiv:2009.06401, 2020 | 20 | 2020 |
Detecting Harmful Content on Online Platforms: What Platforms Need vs. Where Research Efforts Go A Arora, P Nakov, M Hardalov, SM Sarwar, V Nayak, Y Dinkov, D Zlatkova, ... ACM Computing Surveys, 2021 | 5 | 2021 |
Topic-Guided Sampling For Data-Efficient Multi-Domain Stance Detection E Arakelyan, A Arora, I Augenstein arXiv preprint arXiv:2306.00765, 2023 | | 2023 |
Thorny Roses: Investigating the Dual Use Dilemma in Natural Language Processing LA Kaffee, A Arora, Z Talat, I Augenstein arXiv preprint arXiv:2304.08315, 2023 | | 2023 |
Cross-domain label-adaptive stance detection PI Nakov, M Hardalov, I Augenstein, A Arora US Patent App. 17/871,206, 2023 | | 2023 |