Urmăriți
Jan N. van Rijn
Jan N. van Rijn
Adresă de e-mail confirmată pe liacs.leidenuniv.nl - Pagina de pornire
Titlu
Citat de
Citat de
Anul
OpenML: networked science in machine learning
J Vanschoren, JN Van Rijn, B Bischl, L Torgo
ACM SIGKDD Explorations Newsletter 15 (2), 49-60, 2014
12132014
A survey of deep meta-learning
M Huisman, JN Van Rijn, A Plaat
Artificial Intelligence Review 54 (6), 4483-4541, 2021
2392021
Hyperparameter importance across datasets
JN Van Rijn, F Hutter
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
2282018
OpenML benchmarking suites and the OpenML100
B Bischl, G Casalicchio, M Feurer, F Hutter, M Lang, RG Mantovani, ...
arXiv:1708.03731, 2017
127*2017
The online performance estimation framework: heterogeneous ensemble learning for data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
Machine Learning 107, 149-176, 2018
1082018
Fast algorithm selection using learning curves
JN van Rijn, SM Abdulrahman, P Brazdil, J Vanschoren
Advances in Intelligent Data Analysis XIV: 14th International Symposium, IDA …, 2015
952015
OpenML: A collaborative science platform
JN Van Rijn, B Bischl, L Torgo, B Gao, V Umaashankar, S Fischer, ...
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2013
872013
Algorithm selection on data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
Discovery Science: 17th International Conference, DS 2014, Bled, Slovenia …, 2014
712014
Speeding up algorithm selection using average ranking and active testing by introducing runtime
SM Abdulrahman, P Brazdil, JN van Rijn, J Vanschoren
Machine learning 107, 79-108, 2018
672018
Openml-python: an extensible python api for openml
M Feurer, JN Van Rijn, A Kadra, P Gijsbers, N Mallik, S Ravi, A Müller, ...
The Journal of Machine Learning Research 22 (1), 4573-4577, 2021
642021
Having a blast: Meta-learning and heterogeneous ensembles for data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
2015 ieee international conference on data mining, 1003-1008, 2015
592015
The algorithm selection competitions 2015 and 2017
M Lindauer, JN van Rijn, L Kotthoff
Artificial Intelligence 272, 86-100, 2019
53*2019
Does feature selection improve classification? a large scale experiment in OpenML
MJ Post, P Van Der Putten, JN Van Rijn
Advances in Intelligent Data Analysis XV: 15th International Symposium, IDA …, 2016
372016
Learning Curves for Decision Making in Supervised Machine Learning--A Survey
F Mohr, JN van Rijn
arXiv preprint arXiv:2201.12150, 2022
352022
Metalearning: applications to automated machine learning and data mining
P Brazdil, JN van Rijn, C Soares, J Vanschoren
Springer Nature, 2022
332022
Learning multiple defaults for machine learning algorithms
F Pfisterer, JN van Rijn, P Probst, AC Müller, B Bischl
Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2021
322021
Don’t rule out simple models prematurely: A large scale benchmark comparing linear and non-linear classifiers in OpenML
B Strang, P Putten, JN Rijn, F Hutter
Advances in Intelligent Data Analysis XVII: 17th International Symposium …, 2018
242018
Open algorithm selection challenge 2017: Setup and scenarios
M Lindauer, JN van Rijn, L Kotthoff
Open Algorithm Selection Challenge 2017, 1-7, 2017
232017
Massively collaborative machine learning
JN van Rijn
Leiden University, 2016
222016
Hyperparameter importance for image classification by residual neural networks
A Sharma, JN van Rijn, F Hutter, A Müller
Discovery Science: 22nd International Conference, DS 2019, Split, Croatia …, 2019
192019
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20