Low-rank second-order splitting of large-scale differential Riccati equations T Stillfjord IEEE Transactions on Automatic Control 60 (10), 2791-2796, 2015 | 47 | 2015 |

Adaptive high-order splitting schemes for large-scale differential Riccati equations T Stillfjord Numerical Algorithms 78 (4), 1129-1151, 2018 | 36 | 2018 |

Singular value decay of operator-valued differential Lyapunov and Riccati equations T Stillfjord SIAM Journal on Control and Optimization 56 (5), 3598-3618, 2018 | 19 | 2018 |

Numerical solution of the finite horizon stochastic linear quadratic control problem T Damm, H Mena, T Stillfjord Numerical Linear Algebra with Applications 24 (4), e2091, 2017 | 19 | 2017 |

Convergence analysis for splitting of the abstract differential Riccati equation E Hansen, T Stillfjord SIAM Journal on Numerical Analysis 52 (6), 3128-3139, 2014 | 17 | 2014 |

Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations E Hansen, T Stillfjord Mathematics of Computation 82 (284), 1975-1985, 2013 | 16 | 2013 |

Multiscale differential Riccati equations for linear quadratic regulator problems A Målqvist, A Persson, T Stillfjord SIAM Journal on Scientific Computing 40 (4), A2406-A2426, 2018 | 14 | 2018 |

Implicit Euler and Lie splitting discretizations of nonlinear parabolic equations with delay E Hansen, T Stillfjord BIT Numerical Mathematics 54 (3), 673-689, 2014 | 6 | 2014 |

Sublinear Convergence of a Tamed Stochastic Gradient Descent Method in Hilbert Space M Eisenmann, T Stillfjord SIAM Journal on Optimization 32 (3), 1642-1667, 2022 | 4 | 2022 |

Sub-linear convergence of a stochastic proximal iteration method in Hilbert space M Eisenmann, T Stillfjord, M Williamson arXiv preprint arXiv:2010.12348, 2020 | 4 | 2020 |

A linear implicit Euler method for the finite element discretization of a controlled stochastic heat equation P Benner, T Stillfjord, C Trautwein IMA Journal of Numerical Analysis 42 (3), 2118-2150, 2022 | 3 | 2022 |

GPU acceleration of splitting schemes applied to differential matrix equations H Mena, LM Pfurtscheller, T Stillfjord Numerical Algorithms 83 (1), 395-419, 2020 | 3 | 2020 |

Finite element convergence analysis for the thermoviscoelastic Joule heating problem A Målqvist, T Stillfjord BIT Numerical Mathematics 57 (3), 787-810, 2017 | 3 | 2017 |

SRKCD: A stabilized Runge–Kutta method for stochastic optimization T Stillfjord, M Williamson Journal of Computational and Applied Mathematics 417, 114575, 2023 | 2 | 2023 |

A randomized operator splitting scheme inspired by stochastic optimization methods M Eisenmann, T Stillfjord arXiv preprint arXiv:2210.05375, 2022 | 2 | 2022 |

Splitting schemes for nonlinear parabolic problems T Stillfjord Lund University, 2015 | 2 | 2015 |

Splitting of dissipative evolution equations E Hansen, T Stillfjord Oberwolfach Rep 11, 814-816, 2014 | 1 | 2014 |

Numerical methods for closed-loop systems with non-autonomous data B Baran, P Benner, J Saak, T Stillfjord arXiv preprint arXiv:2402.13656, 2024 | | 2024 |

Computing the matrix exponential and the Cholesky factor of a related finite horizon Gramian T Stillfjord, F Tronarp arXiv preprint arXiv:2310.13462, 2023 | | 2023 |

Convergence analysis for the exponential Lie splitting scheme applied to the abstract differential Riccati equation T Stillfjord Preprint without journal information, 2015 | | 2015 |