Traffic flow prediction via spatial temporal graph neural network X Wang, Y Ma, Y Wang, W Jin, X Wang, J Tang, C Jia, J Yu Proceedings of the web conference 2020, 1082-1092, 2020 | 592 | 2020 |
Recommender systems in the era of large language models (llms) Z Zhao, W Fan, J Li, Y Liu, X Mei, Y Wang, Z Wen, F Wang, X Zhao, ... arXiv preprint arXiv:2307.02046, 2023 | 273 | 2023 |
Trustworthy ai: A computational perspective H Liu, Y Wang, W Fan, X Liu, Y Li, S Jain, Y Liu, A Jain, J Tang ACM Transactions on Intelligent Systems and Technology 14 (1), 1-59, 2022 | 264 | 2022 |
Node similarity preserving graph convolutional networks W Jin, T Derr, Y Wang, Y Ma, Z Liu, J Tang Proceedings of the 14th ACM international conference on web search and data …, 2021 | 261 | 2021 |
Self-supervised learning on graphs: Deep insights and new direction W Jin, T Derr, H Liu, Y Wang, S Wang, Z Liu, J Tang The Web Conference (WWW 2021) Workshop: Self-Supervised Learning for the Web, 2021 | 241 | 2021 |
Adversarial attacks and defenses on graphs W Jin, Y Li, H Xu, Y Wang, S Ji, C Aggarwal, J Tang ACM SIGKDD Explorations Newsletter 22 (2), 19-34, 2021 | 194 | 2021 |
Investigating and mitigating degree-related biases in graph convoltuional networks X Tang, H Yao, Y Sun, Y Wang, J Tang, C Aggarwal, P Mitra, S Wang Proceedings of the 29th ACM International Conference on Information …, 2020 | 155 | 2020 |
Elastic graph neural networks X Liu, W Jin, Y Ma, Y Li, H Liu, Y Wang, M Yan, J Tang International Conference on Machine Learning, 6837-6849, 2021 | 139 | 2021 |
Adversarial attacks and defenses on graphs: A review and empirical study W Jin, Y Li, H Xu, Y Wang, J Tang arXiv preprint arXiv:2003.00653 10 (3447556.3447566), 2020 | 125 | 2020 |
Gophormer: Ego-graph transformer for node classification J Zhao, C Li, Q Wen, Y Wang, Y Liu, H Sun, X Xie, Y Ye arXiv preprint arXiv:2110.13094, 2021 | 76 | 2021 |
Mitigating gender bias for neural dialogue generation with adversarial learning H Liu, W Wang, Y Wang, H Liu, Z Liu, J Tang Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020 | 71 | 2020 |
Graph neural networks for multimodal single-cell data integration H Wen, J Ding, W Jin, Y Wang, Y Xie, J Tang Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and …, 2022 | 66 | 2022 |
House: Knowledge graph embedding with householder parameterization R Li, J Zhao, C Li, D He, Y Wang, Y Liu, H Sun, S Wang, W Deng, Y Shen, ... International conference on machine learning, 13209-13224, 2022 | 55 | 2022 |
A comprehensive survey on trustworthy recommender systems W Fan, X Zhao, X Chen, J Su, J Gao, L Wang, Q Liu, Y Wang, H Xu, ... arXiv preprint arXiv:2209.10117, 2022 | 45 | 2022 |
Deep graph learning: Foundations, advances and applications Y Rong, T Xu, J Huang, W Huang, H Cheng, Y Ma, Y Wang, T Derr, L Wu, ... Proceedings of the 26th ACM SIGKDD international conference on knowledge …, 2020 | 43 | 2020 |
Linrec: Linear attention mechanism for long-term sequential recommender systems L Liu, L Cai, C Zhang, X Zhao, J Gao, W Wang, Y Lv, W Fan, Y Wang, ... Proceedings of the 46th International ACM SIGIR Conference on Research and …, 2023 | 41 | 2023 |
An Adaptive Graph Pre-training Framework for Localized Collaborative Filtering Y Wang, C Li, Z Liu, M Li, J Tang, X Xie, L Chen, PS Yu ACM Transactions on Information Systems, 2021 | 29 | 2021 |
Deep embedding for determining the number of clusters Y Wang, Z Shi, X Guo, X Liu, E Zhu, J Yin Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 27 | 2018 |
Are Message Passing Neural Networks Really Helpful for Knowledge Graph Completion? J Li, H Shomer, J Ding, Y Wang, Y Ma, N Shah, J Tang, D Yin Proceedings of the 61st Annual Meeting of the Association for Computational …, 2023 | 21 | 2023 |
Graph pooling with representativeness J Li, Y Ma, Y Wang, C Aggarwal, CD Wang, J Tang 2020 IEEE International Conference on Data Mining (ICDM), 302-311, 2020 | 20 | 2020 |