Mikael Henaff
Mikael Henaff
Facebook AI Research
Adresă de e-mail confirmată pe nyu.edu - Pagina de pornire
Citat de
Citat de
Deep convolutional networks on graph-structured data
M Henaff, J Bruna, Y LeCun
arXiv preprint arXiv:1506.05163, 2015
The loss surfaces of multilayer networks
A Choromanska, M Henaff, M Mathieu, GB Arous, Y LeCun
Artificial intelligence and statistics, 192-204, 2015
Fast Training of Convolutional Networks through FFTs
M Mathieu, M Henaff, Y LeCun
International Conference on Learning Representations (ICLR 2014), 2013
Tracking the World State with Recurrent Entity Networks
M Henaff, J Weston, A Szlam, A Bordes, Y LeCun
International Conference on Learning Representations (ICLR 2017), 2017
A comprehensive evaluation of multicategory classification methods for microbiomic data
A Statnikov, M Henaff, V Narendra, K Konganti, Z Li, L Yang, Z Pei, ...
Microbiome 1, 1-12, 2013
Kinematic state abstraction and provably efficient rich-observation reinforcement learning
D Misra, M Henaff, A Krishnamurthy, J Langford
International conference on machine learning, 6961-6971, 2020
Recurrent Orthogonal Networks and Long-Memory Tasks
M Henaff, A Szlam, Y LeCun
International Conference on Machine Learning, 2034-2042, 2016
Unsupervised learning of sparse features for scalable audio classification.
M Henaff, K Jarrett, K Kavukcuoglu, Y LeCun
ISMIR 11 (445), 2011, 2011
Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic
M Henaff, A Canziani, Y LeCun
International Conference on Learning Representations (ICLR 2019), 2019
Pc-pg: Policy cover directed exploration for provable policy gradient learning
A Agarwal, M Henaff, S Kakade, W Sun
Advances in neural information processing systems 33, 13399-13412, 2020
Disagreement Regularized Imitation Learning
K Brantley, W Sun, M Henaff
International Conference on Learning Representations (ICLR 2020), 2020
Microbiomic signatures of psoriasis: feasibility and methodology comparison
A Statnikov, AV Alekseyenko, Z Li, M Henaff, GI Perez-Perez, MJ Blaser, ...
Scientific reports 3 (1), 1-7, 2013
Model-Based Planning with Discrete and Continuous Actions
M Henaff, WF Whitney, Y LeCun
arXiv preprint arXiv:1705.07177, 2018
Information content and analysis methods for multi-modal high-throughput biomedical data
B Ray, M Henaff, S Ma, E Efstathiadis, ER Peskin, M Picone, T Poli, ...
Scientific reports 4 (1), 4411, 2014
New methods for separating causes from effects in genomics data
A Statnikov, M Henaff, NI Lytkin, CF Aliferis
BMC genomics 13, 1-16, 2012
Explicit Explore-Exploit Algorithms in Continuous State Spaces
M Henaff
Advances in Neural Information Processing Systems, 9372-9382, 2019
Prediction under uncertainty with error-encoding networks
M Henaff, J Zhao, Y LeCun
arXiv preprint arXiv:1711.04994, 2017
Ultra-scalable and efficient methods for hybrid observational and experimental local causal pathway discovery
A Statnikov, S Ma, M Henaff, N Lytkin, E Efstathiadis, ER Peskin, ...
The Journal of Machine Learning Research 16 (1), 3219-3267, 2015
Exploration via elliptical episodic bonuses
M Henaff, R Raileanu, M Jiang, T Rocktäschel
Advances in Neural Information Processing Systems 36, 2022
Motif: Intrinsic motivation from artificial intelligence feedback
M Klissarov, P D'Oro, S Sodhani, R Raileanu, PL Bacon, P Vincent, ...
arXiv preprint arXiv:2310.00166, 2023
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20