Urmăriți
Olivier Bachem
Olivier Bachem
Research Scientist, Google Brain
Adresă de e-mail confirmată pe google.com - Pagina de pornire
Titlu
Citat de
Citat de
Anul
Challenging common assumptions in the unsupervised learning of disentangled representations
F Locatello, S Bauer, M Lucic, G Raetsch, S Gelly, B Schölkopf, O Bachem
international conference on machine learning, 4114-4124, 2019
14532019
Assessing generative models via precision and recall
MSM Sajjadi, O Bachem, M Lucic, O Bousquet, S Gelly
Advances in neural information processing systems 31, 2018
5402018
Recent advances in autoencoder-based representation learning
M Tschannen, O Bachem, M Lucic
arXiv preprint arXiv:1812.05069, 2018
5062018
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
4422023
Google research football: A novel reinforcement learning environment
K Kurach, A Raichuk, P Stańczyk, M Zaj±c, O Bachem, L Espeholt, ...
Proceedings of the AAAI conference on artificial intelligence 34 (04), 4501-4510, 2020
3322020
Weakly-supervised disentanglement without compromises
F Locatello, B Poole, G Rätsch, B Schölkopf, O Bachem, M Tschannen
International conference on machine learning, 6348-6359, 2020
2892020
A large-scale study of representation learning with the visual task adaptation benchmark
X Zhai, J Puigcerver, A Kolesnikov, P Ruyssen, C Riquelme, M Lucic, ...
arXiv preprint arXiv:1910.04867, 2019
2632019
On the fairness of disentangled representations
F Locatello, G Abbati, T Rainforth, S Bauer, B Schölkopf, O Bachem
Advances in neural information processing systems 32, 2019
2172019
Are disentangled representations helpful for abstract visual reasoning?
S Van Steenkiste, F Locatello, J Schmidhuber, O Bachem
Advances in neural information processing systems 32, 2019
1952019
What matters in on-policy reinforcement learning? a large-scale empirical study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
arXiv preprint arXiv:2006.05990, 2020
1932020
Fast and provably good seedings for k-means
O Bachem, M Lucic, H Hassani, A Krause
Advances in neural information processing systems 29, 2016
1892016
Brax--a differentiable physics engine for large scale rigid body simulation
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
arXiv preprint arXiv:2106.13281, 2021
1832021
Disentangling factors of variation using few labels
F Locatello, M Tschannen, S Bauer, G Rätsch, B Schölkopf, O Bachem
arXiv preprint arXiv:1905.01258, 2019
1822019
High-fidelity image generation with fewer labels
M Lučić, M Tschannen, M Ritter, X Zhai, O Bachem, S Gelly
International conference on machine learning, 4183-4192, 2019
1742019
K-mc2: approximate k-means++ in sublinear time
O Bachem, M Lucic, H Hassani, A Krause
AAAI 2016, 2016
169*2016
Practical coreset constructions for machine learning
O Bachem, M Lucic, A Krause
arXiv preprint arXiv:1703.06476, 2017
1672017
Scalable k-means clustering via lightweight coresets
O Bachem, M Lucic, A Krause
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
1562018
What matters for on-policy deep actor-critic methods? a large-scale study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
International conference on learning representations, 2020
1502020
On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset
MW Gondal, M Wuthrich, D Miladinovic, F Locatello, M Breidt, V Volchkov, ...
Advances in Neural Information Processing Systems 32, 2019
1272019
Coresets for nonparametric estimation-the case of DP-means
O Bachem, M Lucic, A Krause
International Conference on Machine Learning, 209-217, 2015
982015
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20