Discontinuity of the phase transition for the planar random-cluster and Potts models with H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion arXiv preprint arXiv:1611.09877, 2016 | 76 | 2016 |

Inhomogeneous bond percolation on square, triangular and hexagonal lattices GR Grimmett, I Manolescu The Annals of Probability 41 (4), 2990-3025, 2013 | 41 | 2013 |

Scaling limits and influence of the seed graph in preferential attachment trees N Curien, T Duquesne, I Kortchemski, I Manolescu Journal de l’École polytechnique—Mathématiques 2, 1-34, 2015 | 39 | 2015 |

Bond percolation on isoradial graphs: criticality and universality GR Grimmett, I Manolescu Probability Theory and Related Fields 159 (1), 273-327, 2014 | 35 | 2014 |

Planar lattices do not recover from forest fires D Kiss, I Manolescu, V Sidoravicius The Annals of Probability, 3216-3238, 2015 | 30 | 2015 |

Universality for the random-cluster model on isoradial graphs H Duminil-Copin, JH Li, I Manolescu Electronic Journal of Probability 23, 1-70, 2018 | 29 | 2018 |

Uniform Lipschitz functions on the triangular lattice have logarithmic variations A Glazman, I Manolescu Communications in mathematical physics 381 (3), 1153-1221, 2021 | 23 | 2021 |

The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp H Duminil-Copin, I Manolescu | 23* | 2014 |

Universality for bond percolation in two dimensions GR Grimmett, I Manolescu The Annals of Probability 41 (5), 3261-3283, 2013 | 21 | 2013 |

The Bethe ansatz for the six-vertex and XXZ models: An exposition H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion Probability Surveys 15, 102-130, 2018 | 18 | 2018 |

Planar random-cluster model: fractal properties of the critical phase H Duminil-Copin, I Manolescu, V Tassion Probability Theory and Related Fields 181 (1), 401-449, 2021 | 17 | 2021 |

Rotational invariance in critical planar lattice models H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, M Oulamara arXiv preprint arXiv:2012.11672, 2020 | 15 | 2020 |

On the probability that self-avoiding walk ends at a given point H Duminil-Copin, A Glazman, A Hammond, I Manolescu The Annals of Probability 44 (2), 955-983, 2016 | 13 | 2016 |

Delocalization of the height function of the six-vertex model H Duminil-Copin, A Karrila, I Manolescu, M Oulamara arXiv preprint arXiv:2012.13750, 2020 | 12 | 2020 |

Planar random-cluster model: scaling relations H Duminil-Copin, I Manolescu Forum of Mathematics, Pi 10, e23, 2022 | 11 | 2022 |

Discontinuity of the phase transition for the planar random-cluster and Potts models with q> 4 H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion Annales Scientifiques de l'Ecole Normale Supérieure 54 (6), 1363-1413, 2021 | 7 | 2021 |

Bounding the number of self-avoiding walks: Hammersley–Welsh with polygon insertion H Duminil-Copin, S Ganguly, A Hammond, I Manolescu The Annals of Probability 48 (4), 1644-1692, 2020 | 6 | 2020 |

Exponential decay in the loop model: , A Glazman, I Manolescu arXiv preprint arXiv:1810.11302, 2018 | 6* | 2018 |

On the six-vertex model’s free energy H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, ... Communications in Mathematical Physics 395 (3), 1383-1430, 2022 | 5 | 2022 |

Universality for planar percolation I Manolescu University of Cambridge, 2012 | 5 | 2012 |