Follow
Ioan Manolescu
Ioan Manolescu
Verified email at unifr.ch - Homepage
Title
Cited by
Cited by
Year
Discontinuity of the phase transition for the planar random-cluster and Potts models with
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
arXiv preprint arXiv:1611.09877, 2016
762016
Inhomogeneous bond percolation on square, triangular and hexagonal lattices
GR Grimmett, I Manolescu
The Annals of Probability 41 (4), 2990-3025, 2013
412013
Scaling limits and influence of the seed graph in preferential attachment trees
N Curien, T Duquesne, I Kortchemski, I Manolescu
Journal de l’École polytechnique—Mathématiques 2, 1-34, 2015
392015
Bond percolation on isoradial graphs: criticality and universality
GR Grimmett, I Manolescu
Probability Theory and Related Fields 159 (1), 273-327, 2014
352014
Planar lattices do not recover from forest fires
D Kiss, I Manolescu, V Sidoravicius
The Annals of Probability, 3216-3238, 2015
302015
Universality for the random-cluster model on isoradial graphs
H Duminil-Copin, JH Li, I Manolescu
Electronic Journal of Probability 23, 1-70, 2018
292018
Uniform Lipschitz functions on the triangular lattice have logarithmic variations
A Glazman, I Manolescu
Communications in mathematical physics 381 (3), 1153-1221, 2021
232021
The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp
H Duminil-Copin, I Manolescu
23*2014
Universality for bond percolation in two dimensions
GR Grimmett, I Manolescu
The Annals of Probability 41 (5), 3261-3283, 2013
212013
The Bethe ansatz for the six-vertex and XXZ models: An exposition
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
Probability Surveys 15, 102-130, 2018
182018
Planar random-cluster model: fractal properties of the critical phase
H Duminil-Copin, I Manolescu, V Tassion
Probability Theory and Related Fields 181 (1), 401-449, 2021
172021
Rotational invariance in critical planar lattice models
H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, M Oulamara
arXiv preprint arXiv:2012.11672, 2020
152020
On the probability that self-avoiding walk ends at a given point
H Duminil-Copin, A Glazman, A Hammond, I Manolescu
The Annals of Probability 44 (2), 955-983, 2016
132016
Delocalization of the height function of the six-vertex model
H Duminil-Copin, A Karrila, I Manolescu, M Oulamara
arXiv preprint arXiv:2012.13750, 2020
122020
Planar random-cluster model: scaling relations
H Duminil-Copin, I Manolescu
Forum of Mathematics, Pi 10, e23, 2022
112022
Discontinuity of the phase transition for the planar random-cluster and Potts models with q> 4
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
Annales Scientifiques de l'Ecole Normale Supérieure 54 (6), 1363-1413, 2021
72021
Bounding the number of self-avoiding walks: Hammersley–Welsh with polygon insertion
H Duminil-Copin, S Ganguly, A Hammond, I Manolescu
The Annals of Probability 48 (4), 1644-1692, 2020
62020
Exponential decay in the loop model: ,
A Glazman, I Manolescu
arXiv preprint arXiv:1810.11302, 2018
6*2018
On the six-vertex model’s free energy
H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, ...
Communications in Mathematical Physics 395 (3), 1383-1430, 2022
52022
Universality for planar percolation
I Manolescu
University of Cambridge, 2012
52012
The system can't perform the operation now. Try again later.
Articles 1–20